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The turbulent flow over a progressive water wave is studied using an eddy viscosity 
model. The governing equations are treated asymptotically for the case e 4 1, 
where E is the square root of a characteristic drag coefficient. A calculation of the 
phase shift between the wave-induced pressure perturbation and the surface elevation 
shows that the phase shift is induced by a term in the gradient of the Reynolds stress. 
Growth rates are determined, and are shown to agree well with observations for the 
most rapidly amplifying waves. However, the present model and previous turbulence 
calculations are found to provide significantly lower growth rates than those 
measured by Snyder et al. (1981) for waves with phase velocities comparable to the 
wind speed. 

1. Introduction 
In the first of Miles’s papers on wind-driven gravity waves (Miles 1957) the 

generation of deep-water waves by a vertically sheared wind in the x-direction is 
treated by expressing the air pressure a t  the water surface as the real part of 

p = spwV2’2p6 exp (ict(z-Ct)), (1.1) 

in which s is the ratio of the air density p to the water density pw, a is the 
wavenumber, V is a characteristic velocity which we define as the wind speed at 
elevation l/a, p is a complex pressure coefficient, 6 is the wave slope, and C is a 
complex phase velocity. Using linear irrotational theory for treating the motion in 
the water yields 

where c is the phase velocity of irrotational deep-water waves, and the complex phase 
velocity is given approximately by 

c2 = c2+sPP, (1.2) 

C = c 1 +;tsP( V / c ) 2 ] .  [ 
As noted by Miles, evaluating the pressure coefficient, f l  at, C = c and substituting the 
result into (1.3) provides an approximation to the complex phase velocity correct up 
to and including O(s) terms. 

Miles’s own work on the problem consists of a hybrid theory in which turbulence 
in the flow over the water is invoked to provide a logarithmic wind profile but is 
otherwise ignored. Subsequent calculations of the pressure a t  the water surface take 
turbulence into account using eddy viscosity models of varying degrees of complexity. 
Most of these studies (e.g. Gent & Taylor 1976; Al-Zanaidi & Hui 1984) involve a 
fairly heavy amount of numerical computatation which, in our opinion, tends to 
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obscure the physics. In  particular, field observations (Snyder et al. 1981) indicate that 
for c < V the vertical variation of the perturbation pressure in the air is consistent 
with potential theory, and it is unclear from the numerical turbulence calculations 
why the velocity perturbation should be irrotational. The numerical calculations also 
provide little information on the asymptotic structure of the perturbed flow. 

These issues are considered in papers on turbulent flow over water waves by 
Knight (1977) and on steady turbulent flow over a small hump by Jackson & Hunt 
(1975). Knight and Jackson & Hunt present linearized asymptotic theories valid for 
small values of the ratio F of the friction velocity to the characteristic wind speed, 
and find that the flow outside the viscous sublayer has a two-layer structure 
consisting of an inner layer of dimensionless thickness F and an outer region in which 
the velocity perturbation is irrotational to lowest order in F .  Despite considerable 
disagreement between the solutions found by Knight and Jackson & Hunt, their 
theories agree in predicting a pressure force on the lower boundary in order of 
magnitude agreement with the numerical results of Gent & Taylor and Al-Zanaidi 
& Hui and with observations. 

Both Knight and Jackson & Hunt use an eddy viscosity assumption as part of 
their turbulence models. An eddy viscosity approach was also used in a numerical 
study of turbulent flow over a rigid wavy surface by McLean (1983), and good 
agreement between measured and computed wall stresses was obtained for flow over 
small-amplitude waves. 

Sykes’s (1980) treatment of the problem considered by Jackson & Hunt points out 
a significant difference between second-order turbulence modelling and the eddy 
viscosity models used in the paper cited above. If ( p V 2 )  is used as a pressure scale, 
eddy-viscosity models predict a dimensionless pressure force of magnitude O(eS2) on 
a surface protrusion with slope S, whereas the second-order closure method used in 
Sykes’s paper yields a pressure force of magnitude 0(e2a2). A study of the wave- 
generation problem or of the problem treated by McLean using the model employed 
by Sykes would therefore predict pressure forces smaller by a factor of F than those 
calculated using eddy viscosity models or observed in field and laboratory 
experiments. For this reason we disagree with Sykes’s view that the pressure force 
predicted by eddy-viscosity models is spuriously large, and feel instead that such 
models are preferable to the current generation of second-order closure models in 
treating problems of this type. 

In the present paper we will present an asymptotic theory for the turbulent flow 
over water waves based on the use of a turbulence model in which the eddy viscosity 
is assumed to vary linearly with distance from the water surface. Our reasons for 
initiating another treatment of this extensively studied problem are to resolve 
disagreements between the treatments of Knight and Jackson & Hunt by making an 
independent calculation of the perturbation velocity and pressure and to compare 
computed wave growth rates with the results of recent field and laboratory 
observations. We will also be concerned with determining the extent to which the 
results depend on the turbulence model and with the physical mechanism involved 
in the wave-generation process. 

The analysis given below is based on a scaling argument which shows that the flow 
structure depends on E ,  the ratio of the friction velocity to  the wind speed, and on 
the parameter 

(1.4) 

We assume that F is small, and throughout most of the paper we restrict our attention 
to the case Iw1 % O(e),  which includes the most rapidly growing waves. For IwI in 

V-c  
V ’  

w=--- 



Turbulent flow over a progressive water wave 7 1  

this range we find that the asymptotic structure consists of an outer flow with 
lengthscale L = l / u  and a defect layer with lengthscale EL, in agreement with other 
analytical calculations of perturbed turbulent flow. Explicit solutions are given for 
the perturbation velocity and pressure in each region, and i t  is shown that the outer 
solution and the perturbation pressure at the water surface are independent of the 
eddy-viscosity model up to and including O ( E )  terms. The solution for the surface 
pressure provides our main result, the formula, 

pi = 2EKW, (1.5)  

for pi, the imaginary part of the pressure coefficient in ( l . l ) ,  in which K = 0.41 is 
Karman’s constant. 

According to the present theory, the phase lag between the surface pressure and 
the wave elevation occurs because of a term in the x-component of the turbulent 
force. Stewart (1974) presents another explanation for the phase shift based on a 
physical argument about the behaviour of turbulent eddies in flow adjacent to a 
wavy surface. His expression for the imaginary part of the pressure coefficient agrees 
precisely with (1.5) if our factor 2~ in that equation is replaced by a factor 1.2. 

After allowing for differences in notation, we find that our outer solution and our 
expression for the pressure coefficient coincide with Knight’s, but that our inner 
solution includes a boundary-layer correction to the outer flow which is present in 
Jackson & Hunt’s solution but which is omitted in Knight’s. We have been unable 
to account for the absence of this part of the solution in Knight’s theory because of 
the lack of detail in his paper. A comparison of our solution with Jackson & Hunt’s 
is even more difficult because, as noted by Sykes, Jackson & Hunt’s analysis is not 
strictly rational in the sense of singular perturbation theory. 

Growth rates calculated using (1 .5)  are in good quantitative agreement with the 
numerical turbulence-model calculations of Gent & Taylor and Al-Zanaidi & Hui. 
The present theory is also in satisfactory agreement with observed growth rates for 
the most rapidly growing waves (Plant 1982; Mitsuyasu & Honda 1982), and yields 
the intuitively pleasing result that waves travelling against the wind, or more rapidly 
than the wind, transfer energy and momentum from the water to the air. However, 
as in other turbulence calculations carried out using eddy-viscosity models, values 
of the imaginary part of the pressure coefficient calculated here are small compared 
to the observations of Snyder et al. It is unclear at  present whether this indicates a 
deficiency in the theory or in the observations. 

2. Derivation of the inner and outer equations 
Let T denote time and ( X ,  I’) a set of rectangular coordinates, with Y pointing in 

the vertical direction. We consider turbulent flow over a wave surface at  
Y = LGf(X, T ) ,  where L is the reciprocal of a characteristic wavenumber and 6 is a 
characteristic wave slope. In the present calculation angle brackets denote an 
ensemble average, and the velocity is expressed as the sum of averaged and random 
parts u and u‘. Then, employing dyadic notation (Bird et al. 1977, appendix A) and 
letting 7t denote the ensemble averaged pressure, we introduce the eddy viscosity v 
and a pressure-like variable p through 

< U’U’ > = $< U”U’ > J-tjE, (2.1) 

and 
7~ = n-nnoY-kn < u’*u’ >. (2.2) 
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where 1 is the unit tensor and 
E = VU+ ( V U ) ~ ,  

and we substitute into the averaged continuity and momentum equations to obtain 

v * u  = 0, (2.4) 

and 

in which D/DT denotes the material derivative. 
The boundary conditions at the surface are given by 

u, n D 
K Yo DT 

s”.u+-log--, -(Y-L6f) = 0, V+KU7n, 

as Y-t L Sf, where ŝ  is a unit vector parallel to the surface, u, is the friction velocity, 
K is the Karman constant, Yo is the surface roughness length, n is distance measured 
normal to the water surface, and &us is the tangential component of the orbital 
velocity associated with the waves. Here the wind-induced surface drift is neglected, 
and us = acf for a monochromatic wave with wavenumber a and speed c .  

If 6 = 0 the governing equations admit a parallel flow solution p = w = 0, 

u = U( Y )  = -log--, u, y 
v = N (  Y )  = KU, Y ,  u, = u,, 

K yo 
where U, is a constant. The solution (2.7) can also be expressed in the form 

where V is the wind speed a t  height L above the water and 

(2.7) 

is the square root of a drag coefficient in a quadratic drag law relating the tangential 
surface stress to the wind speed V .  Observations indicate that the drag coefficient 
e2 has a magnitude of about 

It is convenient to introduce dimensionless variables by using L as a lengthscale, 
V as a scale for the rectangular velocity components (u, w) and for the surface drift 
us, (L /V)  as a timescale, (pV2)  as a pressure scale, ( sV)  as a scale for the friction 
velocity, and (eL V )  as a scale for the eddy viscosity. When expressed in dimensionless 
terms, the definition of E, the continuity equation, and the boundary condition on 
v take the same form as before, the momentum equation becomes 

and so s can be regarded as a small parameter. 

Du --+vp DT = SV.(VE), (2.10) 

and the boundary conditions on the velocity are given by 

& 
s^*u+u, l+-log(n) ( Y - S f )  = 0 as Y+8f. (2.11) 

[ K  

Although we agree with Townsend’s (1972) view that the critical layer is unim- 
portant in turbulent flows of this type, it  should be noted that expressing the 
dimensionless basic solution in the form 
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does not preclude the existence of a critical layer at which U = c for travelling wave 
perturbations with dimensionless phase speed c. Instead, (2.12) implies that the 
critical layer lies outside the viscous sublayer only if c is close to unity, as occurs in 
Miles's calculation of the phase speed for the most rapidly amplifying waves in his 
inviscid theory. 

Small perturbations to the basic flow are treated most efficiently by using Joseph's 
theory of domain perturbations (Joseph 1973). As explained by Lebovitz (1982), this 
consists of introducing a transformation 

(2.13) 

which maps the boundary Y = iSf into a plane, and then expanding the dependent 
variables in a perturbation series of the form 

F(x,  t )  = Fro~+~[Fr1J+t*V~flo~]+0(62), ( 2 . 1 4 ~ )  

in which all terms are expressed as functions of the new variables (x, t ) .  It follows from 
the theory set forth by Joseph and Lebovitz that the partial differential equations 
satisfied by f l k l  have the same form in x-space as the equations satisfied in X-space 
by the quantities F(k) in the more conventional expansion 

F(x ,  T )  = F(")(x,  T )  + 6F(')(X, T )  + . . . , (2.14 b)  

and therefore the boundary can be mapped into a plane without encountering 
complications involving the metric tensor in the governing partial differential 
equations. 

To carry out the procedure in the present problem, we map the boundary Y = 6' 
into y = 0 by introducing orthogonal curvilinear coordinates (x, y) through 

X = x + iSt(x, t )  + 0(6'), T = t ,  

(2.15) 

where H = (1 + 62(8f/ax)z)i, (2.16) 

and where y is distance measured along a perpendicular to the water surface, and 
we expand the dependent variables in the form 

(2.17) 

where F denotes either v or p .  Here IT and N are given by (2.12) with Y replaced 
by y. and so the terms 

v = N ( y ) + 6  , uT = 1+6upl, F = 6F[l] ,  

denote the O(6) contributions to the horizontal velocity and eddy viscosity. 

omitting the superscripts yields the linearized equations 
Substituting (2.17) into the governing equations, neglecting 0(iS2) terms, and 

au av 
ax ay -+- = 0 ,  (2.18) 

(2.20) 



74  S .  J .  Jacobs 

together with the boundary conditions 

(2 .21)  

as y+O.  We also impose the boundary conditions (u, v,p)+O as y +  00. 

In the treatment of a monochromatic wave with dimensional wavenumber a, we 
let the lengthscale L = l / a  and express f and the dependent variables F as the real 
parts of 

f = exp [i(x-ct)], F = E ( y )  exp [i(x-ct)], (2 .22)  

where the dimensionless phase speed c is the ratio of the dimensional phase speed to 
V .  Substituting (2 .22)  into the momentum equations shows that the magnitudes of 
the time-derivative terms are proportional to 

w = l - c ,  (2 .23 )  

with an O(s) error, and that the magnitudes of the turbulent stress terms are 
proportional to E .  Consequently, the ratio of the stress terms to the time-derivative 
terms is O ( E / W ) ,  and the solution has a boundary-layer structure if IwI % O(E) .  We 
restrict our attention to this case because the observations cited earlier imply that 
the most rapidly growing waves have dimensionless phase speeds small compared 
to unity. Employing standard methods in boundary-layer theory shows that the 
dimensionless boundary-layer thickness is O(E).  

In treating the outer region we note that the quantity v in the turbulent stress 
terms is multiplied by the O ( E ~ )  quantity (edU/dy), and can be neglected since we 
intend carrying out the calculation up to and including O(e) terms. Eliminating p by 
cross-differentiation and noting also that the flow in the outer region is irrotational 
to lowest order in E ,  we find that the perturbation vorticity equation in the outer 
region becomes - 

(2 .24)  
E -+- V2Y+-Y = 0, 

(:t :X) K Y 2  

correct to O(e), where Y is a stream function defined by 

ay ay 
aY ’ a x t  

u = - -  v=- 

and that the perturbation pressure in this region solves 

(2 .25)  

(2.26 a)  

(2.263)  

again correct to O(E). 

right-hand side of the x-momentum equation in the form 
In our treatment of the inner layer, we express the term involving w on the 

(2 .27)  

and we follow Jackson & Hunt by assuming that the perturbation eddy viscosity 
( v + ~ f )  varies linearly with y throughout the inner layer. Then the second term on 
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the right-hand side in (2.27) vanishes, and introducing a stretched inner coordinate 
7 = y/E and defining quantities Q, and Qv through 

E 1% (4 6 log (7) u = 1 +-+-, 
in which U is expressed as 

K K 

we obtain the governing equations for the inner layer in the form 

(2.28) 

(2.29) 

(2.30) 

(2.32) 

together with the boundary conditions 

Qx+u, u+u,, Q,+O, (2.33) 
as 7+0 .  

Although these equations will be solved in the next section, it is worth showing 
here that the wave growth rate can be determined very simply if we assume that the 
inner solution for p is the inner expansion of the outer solution. If this is true, the 
rate at  which energy is transmitted to the water is calculated by noting that the 
O(6) contribution to the normal component of velocity at  the water surface is given 
to lowest order in E by (v-af/ax), where v is evaluated at y = 0, so that the 
dimensional rate of pressure working W becomes 

w = -pvr3s2p(v-af/ax), (2.34) 

in which p is the outer pressure evaluated at y = 0 and the overbar denotes the 
average over a wavelength. The outer flow is irrotational to lowest order in E and 

af af (2.35) 
satisfies 

v = -+- 
at y = 0, which implies that 

at axi 

u = w cos (x-ct)e-v, v = -w sin(x-ct)e-Y, (2.36) 
if 

It follows that 
f = cos (x-ct). 

af 1-w 
v-- ax = -(--)v 

at y = 0, which in turn implies that 

(2.37) 

(2.38) 

(2.39) 

To evaluate the average on the right-hand side of (2.39), we denote the components 
of the force on the right-hand side of (2.26) by F ,  and F,, and find that the rate of 
work done by this force is given by 

dU a (:: dy ay 
D = uF,+vF, = EKU --- -uv-++K- (u2+v2). (2.40) 
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The first term on the right-hand side of (2.40) vanishes to lowest order in E and the 
average of the second term over a wavelength vanishes. Consequently, multiplying 
( 2 . 2 6 ~ )  and (2.263) by u and v, respectively, averaging over a wavelength, and 
integrating over y yields 

r m  ." 

j~ = - J Ddy = C K W ~ ,  
0 

and hence 

(2.41) 

(2.42) 

Returning temporarily to the use of dimensional variables, we express Win terms 
of the dimensional phase velocity c to obtain 

(2.43) 

and note that the growth factor aCi in (1 .1)  is given in terms of the energy density 
E, of the waves by 

(2.44) 
W 

2aci = -, 
E, 

where a is the dimensional wavenumber and 

Therefore the imaginary part of the complex phase velocity is given by 

(2.45) 

(2.46) 

subject to verification of our assumption that the inner solution for p is the inner 
expansion of the outer solution. As can be seen, (2.41) is the key equation in the 
derivation because it shows that the phase shift between the wave-induced pressure 
perturbation and the surface elevation is induced by a term in the gradient of the 
Reynolds stress. 

3. Solution of the inner and outer equations 
We now restrict our attention to travelling wave perturbations to the basic flow, 

and we employ dimensionless variables and the notation of (2.22). For a monochro- 
matic progressive wave the surface drift term us in (2.33) is replaced by the 
dimensionless wave speed c and the operator @/at+  a/ax) by iw, where w is defined 
by (2.23). 

Turning first to the outer problem, we find that the solution Y of (2.24) satisfying 
Y + O  as y-f 00 is a multiple A of W0,,(2y), where Wo+m is Whittaker's confluent 
hypergeometric function (Whittaker & Watson 1965, pp. 339-340) and where 

Substituting (3.1) into the integral representation of the Whittaker function given 
on page 340 of Whittaker & Watson and expanding the result in powers of e yields 

€ 

KZU 
Wo,m(2y) = ePY+-ee"Ei( -2y)+0(s2), (3.2) 
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where -Ei(-y) is the exponential integral (Lebedev 1972, pp. 30-32). The form of 
the O(1) solution of the inner equations obtained below implies that the 0(1) 
contribution to the inner expansion of Y must equal w and that the constant term 
in the O(E) contribution vanishes. Use of the small-argument expansion of (3.2) then 
implies that the multiplying constant A is given by 

(3.3) 
6 

K 
A = w--(y+log(2)), 

correct to O(s), where y is Euler's constant. 
The inner expansion of the outer solution can now be determined by multiplying 

(3.2) by (3.3) and by expressing the solutions for the perturbation velocity components 
and pressure in terms of the inner variable 9.  Carrying out this calculation yields 

a = U)------ 1 €log(€) e [ v +  log (?7)+2y+2 K log (2)-1 1. 
(3.4) 

KT K 

and 

$ = -WS+Ew I"'+ 2,'"g + 2iK + wr]. (3.6) 

The solution of the inner equations is found by expanding the dependent variables 
in the series 

F = F(O) + E log (E) F(l)  + eF@) + . . . , (3.7) 

which yields 
0:) = w, 0;) = -iwy, yj(0) = -w2, &(o) = 1 - 2c (3.8) 

Carrying the solution to O(E) shows that 

(3.10 b) 

where 

and where R solves 

subject to 

c1 = - 2y+2log(2)-1 9 

K 
(3.11) 

(3.12) 

(3.13) 
2w 

R + 4 ~ ) - C 1 + ~ l o g ( ~ )  ( r + O ) ,  R+O (q+CO). 

Equations (3.12) and (3.13) are solved by 

(3.14) 
2w 

R = --K,,(byi), 
K 
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where KO is a modified Bessel function, 

and 
b = 2 - exp [(+in) sgn (w)], t:'Y (3.15) 

(3.16) 

and this completes the solution for the inner region correct to O ( E ) .  As noted 
previously, our outer solution agrees with Knight's, while his inner solution omits 
a boundary-layer term of the type given here by R ( y ) .  

It can be seen by inspection that the inner solution for the perturbation pressure 
is the inner expansion of the outer solution. This verifies the assumption made a t  the 
end of the previous section, and so (2.46) provides the solution for the imaginary part 
of the complex phase velocity in,( 1.1).  The pressure coefficient p in that equation is 
equal to the value of$ a t  the water surface, and is obtained by setting y = 0 in (3.6). 

Before going on to compare our solution for the wave growth rate with the results 
of other theories and with observations, we need to consider how our results would 
be modified if we had employed a more sophisticated eddy-viscosity model. The most 
straightforward way of resolving this issue is to scale the perturbation eddy viscosity 
using the assumptions common to standard one-equation and two-equation eddy- 
viscosity models and to repeat the calculation carried out above. The results of this 
lengthy procedure show that the outer solution and the surface pressure are 
independent of the turbulence model up to and including O ( E )  terms, and that the 
O(1) and O(E log ( 6 ) )  inner solutions are also independent of the model. However, the 
O ( E )  x-momentum equation in the inner region contains a term on the right-hand side 
involving the perturbation eddy viscosity which is omitted in the present theory, and 
therefore the boundary-layer correction calculated above involving the modified 
Bessel function would take a different form if we had used a more complicated 
turbulence model. The pressure coefficient, however, is independent of the turbulence 
model to the order of approximation considered here. 

= 1+2y(l-Zc)+2w log(Iwl/~)-2 log(2)+inlwl 
K 

4. Comparison with other studies 
In  order to compare our results with observations and with other calculations, we 

revert to the use of dimensional variables and find from the above analysis that the 
pressure coefficient p defined in (1.1 ) is given by 

Taking the imaginary part of (4.1) yields the formula (1.5) for Pi, and substituting 
(1.5) into (1.3) yields the imaginary part of the complex phase velocity given by 
(2.46), the expression for which shows that waves travelling against the wind or at  
speeds greater than the wind transfer energy from the water to the air. For 
amplifying waves, we substitute the expression for Ci into the definition, 

(4.2) 
5=2--,  ci 

C 

of Miles's growth factor to obtain the important result 

(4.3) 
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An analysis of the meteorological data given in the paper by Snyder et al. cited 
earlier suggests that the roughness length can be calculated using a Charnock relation 
of the form 

(4.4) 

with a = 352.3. This value for a is much larger than results obtained for a fully 
developed sea (cf. Stewart 1974, figure l),  but appears to be appropriate for the initial 
phases of wave growth. Use of (2.9), (4.4), and the relation between the speed of 
deep-water waves and the lengthscale L = l/a shows that the parameter, 

2KS 
E 

A=---, 

can be expressed in the form 

h = 2s log[a(+J], 

and for waves such that c < V ,  (4.3) can be approximated by 

[ = 

(4.5) 

(4.7) 

with h given by (4.6). The papers by Mitsuyasu & Honda and Plant cited in 5 1 express 
empirical equations for wave growth rates in this form. 

Observations suggest that the most rapidly growing waves have phase speeds of 
the order of 10UT, and in order to compare our results with measured growth rates 
and with other theoretical calculations, we assume c = lOU, in (4.6) and obtain the 
estimate h = 0.026 if we let the density ratio s take the value 1.25 x lop3. Al-Zanaidi 
& Hui find that for the roughness lengths appropriate for field data, their numerical 
calculations of the growth rate are consistent with (4.7) provided that 

(4.8) 

This is in reasonably good agreement with the present theory. Gent & Taylor’s 
calculations for the case of fixed roughness length provide a value 

h = A,, = 0.031, 

A,, = 0.023, (4.9) 

for small-amplitude waves with E = 0.05. Our theory implies that A = 0.021 for this 
value of E ,  and again the agreement is good. The observational papers provide the 
values 

A, = 0.04+0.02, A,, = 0.054, (4.10) 

where A, is taken from Plant’s survey of field and laboratory observations and A,, 
from Mitsuyasu & Honda’s wave-tank experiments. Our value h = 0.026 agrees 
reasonably well with Plant’s correlation, but appears to underestimate the growth 
rate for wave-tank experiments. 

Unfortunately, the degree of agreement between (4.3) and the measurements of 
Snyder et al. for larger values of c is very poor. According to Snyder et al., the growth 
factor y can be expressed in terms of the wind speed U, a t  elevation 5 m in the form 

6 = (0.2 to 0.3) ~ Y 5 3  (c < u, < 3c), (4.1 1 )  

for waves travelling in the wind direction. Using the estimate of the Charnock 
constant given earlier and the average wind speed measured by Snyder et al., we find 
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if c = iU5 our estimate for g is only about 40 % as large as the value given by (4.11), 
and that the lack of agreement between our theory and observations is greater for 
larger values of c .  The numerical calculations of Gent & Taylor and of Al-Zanaidi & 
Hui are in even poorer agreement with (4.11) for values of c greater than tU5, and 
therefore either the measurements are inaccurate or the present type of turbulence 
modelling fails for some reason when applied to values of the phase speed comparable 
in magnitude to the wind speed. In the paper by McLean cited in 9 1,  the agreement 
between his theory and observations was much better for flow over small-amplitude 
waves on a rigid surface than for flow over large-amplitude waves. This suggests that 
curvature effects may cause errors in eddy viscosity models in dealing with the 
comparatively large-amplitude waves usually observed when the phase speed is close 
to the wind speed, but further investigation is needed to verify this conjecture. 
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